IBEX 2006 Session 101 Design Basics for Composite Structures

Jim Antrim – Antrim Associates Alex Kozloff – Kozloff Enterprises Jeremy Laundergan – Askeland Engineering

What are composites?

General term:

Any combination of materials bonded together to act as one engineering unit, including, for example:

METALS
WOOD
FOAM
FOAM
PLASTIC
F.R.P
Where your imagination goes...

<u>Specific term:</u>

(As used in this talk)

F.R.P. – FIBER reinforced PLASTICS

F.R.P. usually used as solid *laminate* or as laminated "sandwich"

Familiar Materials vs. Composites

METALS

Isotropic- Uniform properties in all directions Yield (permanent bend) before failure

• WOOD

Nature's unidirectional: has a grain, and is much stronger in line with grain

PLYWOOD

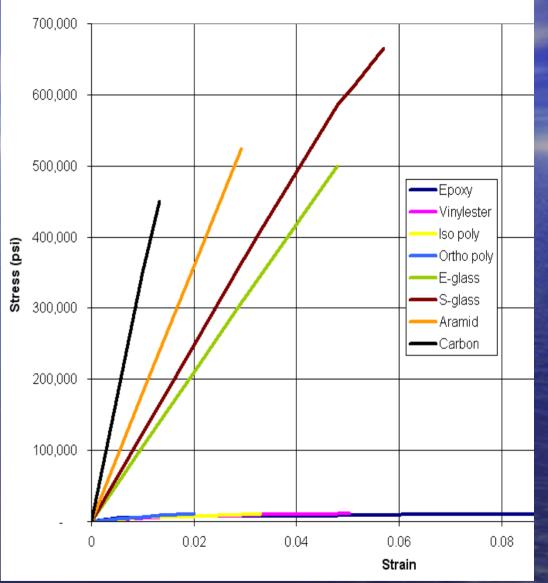
Laminated wood, bi-directional

PLASTICS

Homogenous Usually relatively weak Soft or hard Non-linear stress/strain COMPOSITE LAMINATE
 Chopped strand mat
 Quasi isotropic

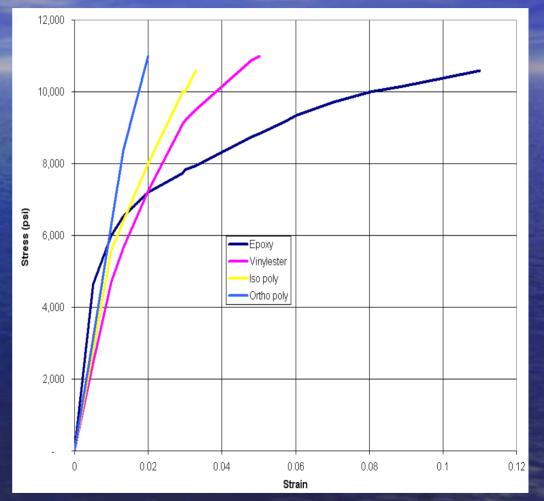
Other composite fabrics are *directional*

One-directional rovings or fibers combined with weaving, stitching, and/or layering


Think of the fiber direction as *grain* (as in wood)

It is both FIBER REINFORCED PLASTIC and PLASTIC BONDED FIBERS

Stress/Strain for Fibers & Resin.


(Isolated, not in a laminate)

- Fibers do not yield
- Fibers are vastly stronger than resin. This is why "grain" direction is important
- Stiff fibers (e.g. carbon) carry high load at low strain (low stretch)
- Lower quality resins fail before fibers – fatigue & laminate strength limiting
- High quality resin have high strain. Fatigue is greatly reduced. Fibers can reach load capacity

Stress/Strain for various resin types

- Same plot as previous
- These are generic.
 Properties can vary significantly
- Ortho polyesters are typically stiff/more brittle. Strain to failure less than most fibers
- Vinylesters and Epoxies have much higher strain to failure, therefore less fatigue in a laminate
- More fiber strength is available when resin matrix has higher strain at failure

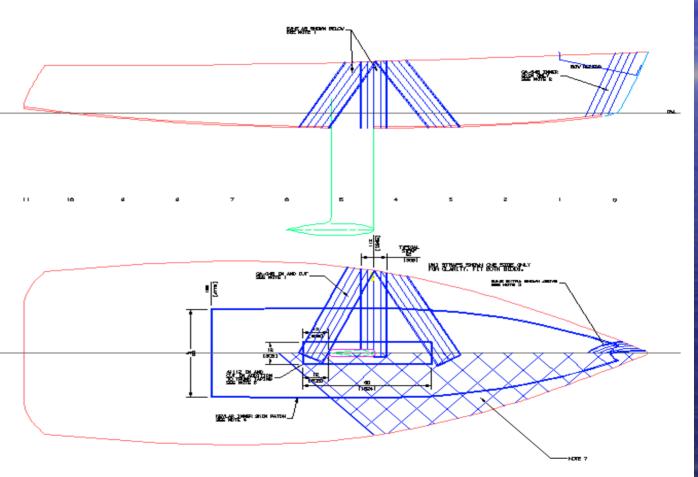
Use composites effectively

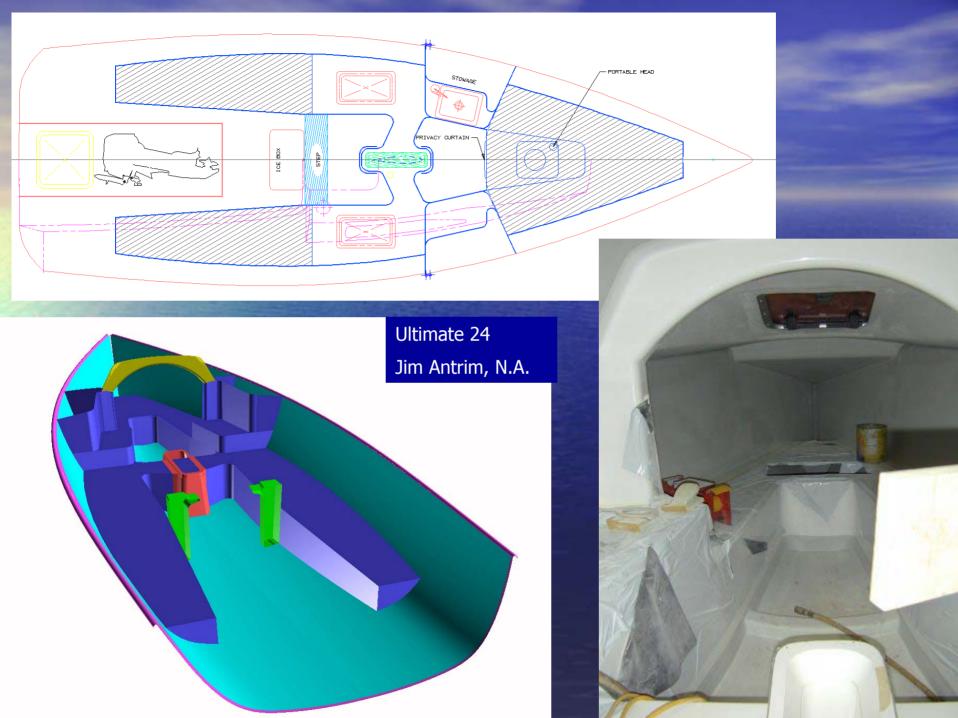
Align fibers ("grain") with the load

 Even when load path is well known, 100% unidirectional laminate is rarely wise.
 (Due to Poisson effects, at least 20% of fibers off axis is usually desirable when load path is clearly defined.)

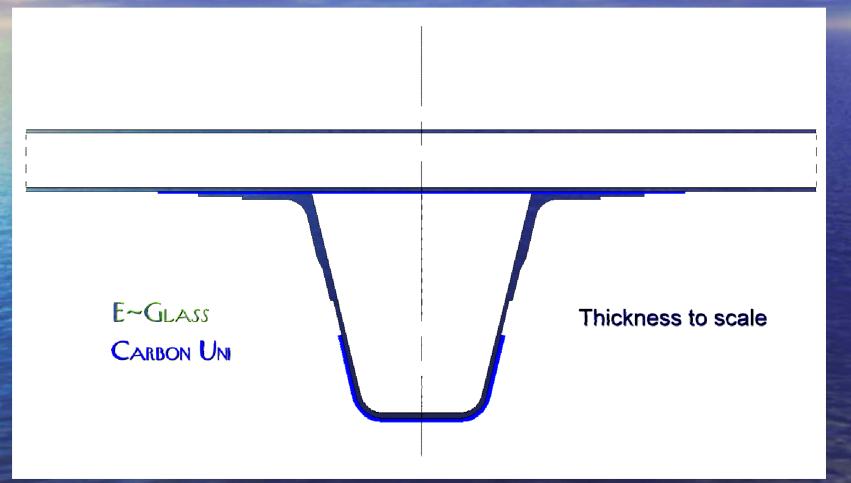
For panels, primary grain should run in the short direction across framing.

(For a wood floor, would you lay your planking across the frames or parallel to them?)

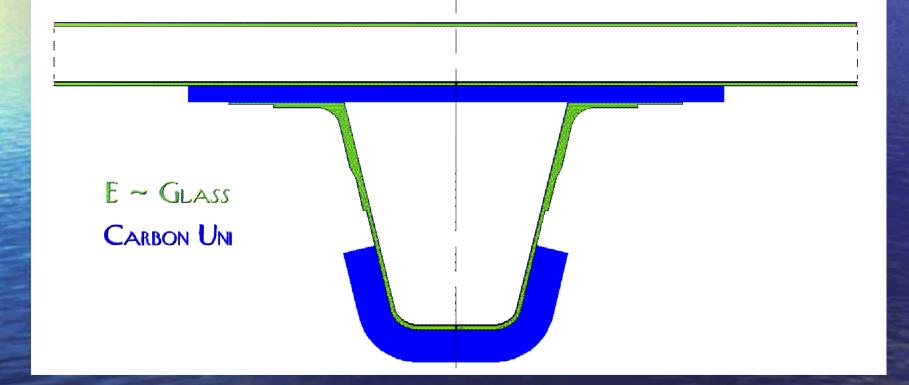

 Exotic, expensive material where it is most effective


Effective use of reinforcements in Ultimate 24 Sportboat

•Carbon uni strap aligned with primary loads: chainplate to keel, etc.


•Kevlar grounding patch in bottom

•Extra E-glass +/-45 biaxial in bow for collision and shear due to rig loads



Effective use of high tech composites Hat Section example

Thickness adjusted to EFFECTIVE area (Area times Young's Modulus)

Water head (pressure) on a monohull sailboat

Hull bending in a sailboat under imposed rig loads, wave loads, & keel weight

Perhaps we underestimated the hull bending loads?

Not Antrim Associates, Naval Architects

(though we have had mishaps on occasion too)

Orienting fibers to the load

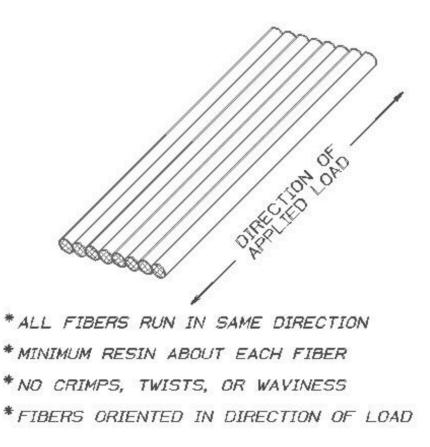
Many parts have obvious load path

- Tubes, such as mast, boom, bowsprit, rudder post, multihull crossbeams.
- Hull framing

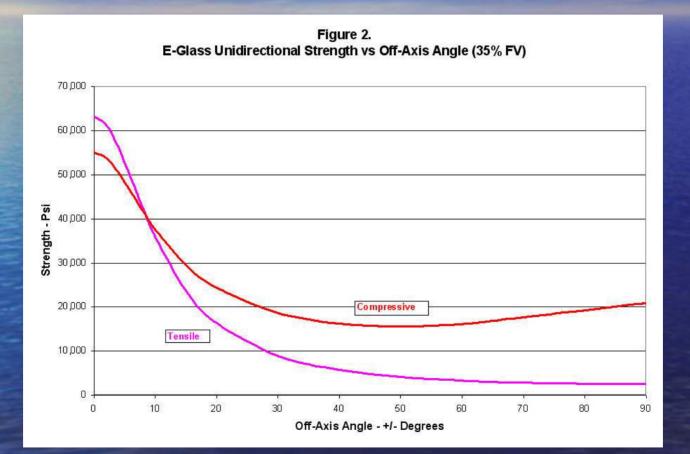
Hull/Deck shell has varied loading

- Water pressure, crew & gear loads perpendicular to panel surface
- Hull bending loads in plane with panel

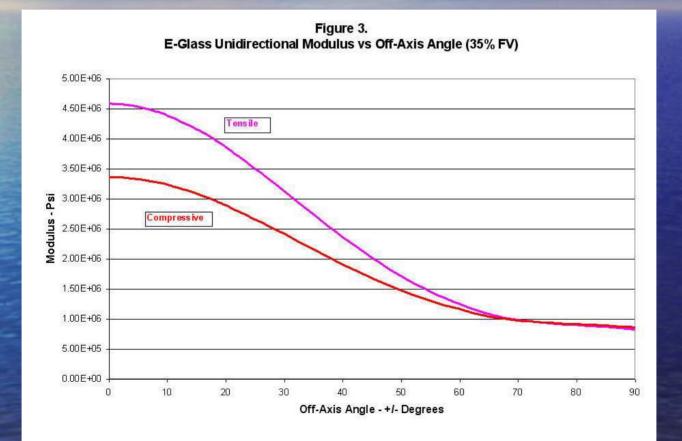
Bulkheads & ring frames have varied edge loading, shear

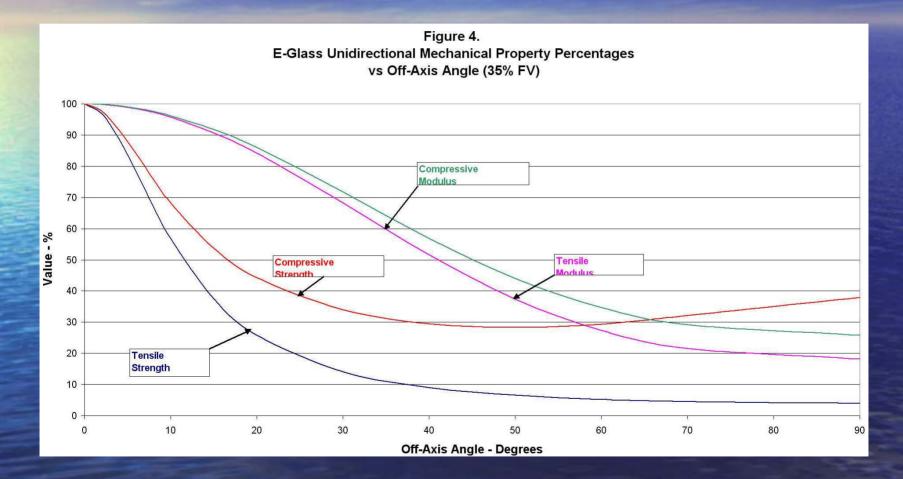


Billy Black photo Antrim 40 trimaran


Zephyr

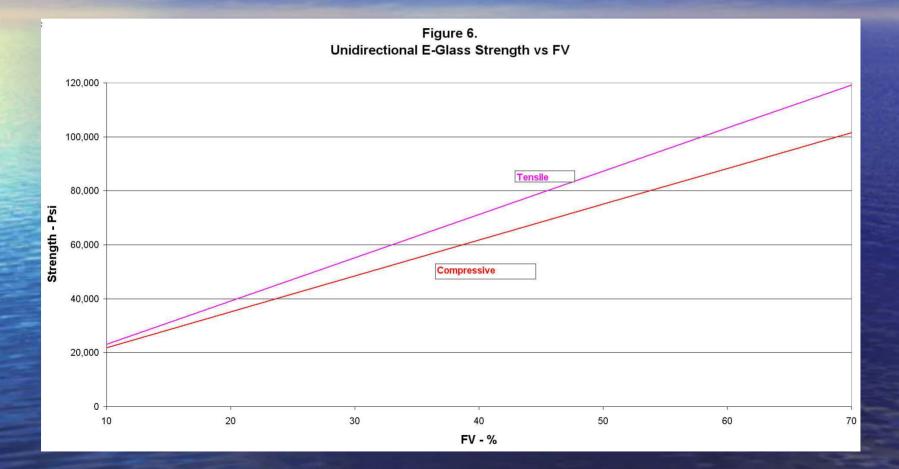
Ideal Composite Structure


FIGURE 1 THE IDEAL COMPOSITE STRUCTURE


E-Glass Unidirectional vs. Off-Axis Strength

E-Glass Unidirectional vs. Off-Axis Modulus

E-Glass Unidirectional Mechanical Property % vs. Off Axis Angle



Unidirectional Tensile Strength vs. Off Axis Angle

Figure 5. Unidirectional Tensile Strength vs Off-Axis Angle (35 % FV) 140,000 120,000 Carbon 100,000 Tensile Strength - Psi S-Glass 80,000 E-Glass 60,000 40,000 20,000 Keylar 49 0 10 20 30 40 50 60 70 80 0 90

Off-Axis Angle - +/- Degrees

E-Glass Unidirectional Strength vs. Fiber Volume

E-Glass Unidirectional Modulus vs Fiber Volume

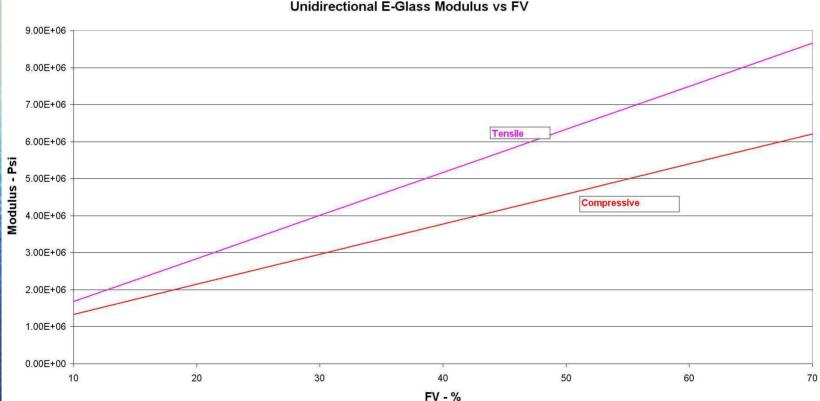
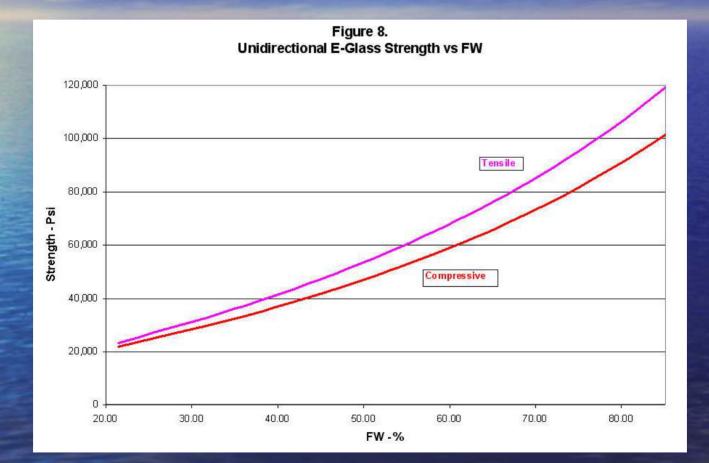
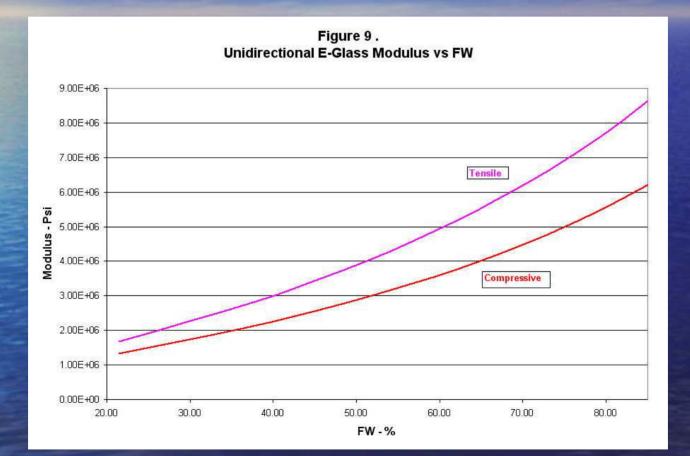
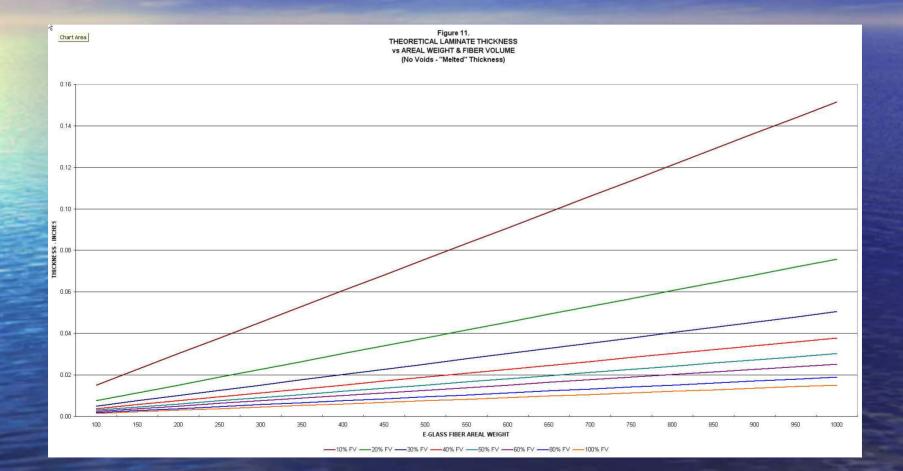
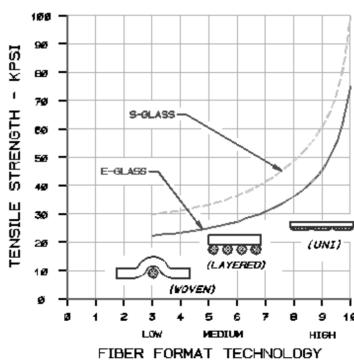




Figure 7 Unidirectional E-Glass Modulus vs FV


E-Glass Unidirectional Strength vs. FW

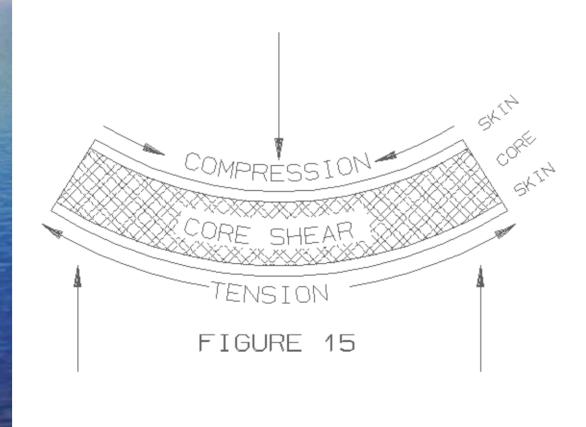
Unidirectional E-Glass Modulus vs FW



Theoretical Laminate Thickness

Variation of Tensile Strength with Fiber Format

FIGURE 12 VARIATION OF TENSILE STRENGTH WITH FIBER FORMAT 30 PERCENT FIBER VOLUME 90 DEGREE FIBER ORIENTATION ø 100 90 KPSI 62 1 70 STRENGTH S-OLASS-CØ. 50 E-GLASS -49 TENSILE 30 20 (UNI) 0000 (LAYERED) 10 IVOVENI ø 6 9 10 MEDIUM HIGH



Knockdown Factors for Woven Fabrics

 		Figure 13.		
Knoc	kdown Fac	tors for Wo	oven Fabric	s
E-Glass FV (%) =		25.00		
Uni Strength (Psi) =		47,203		
Uni E-Glass FV (%) =		25.00		
		Knockdown		
		Factor		
	Weave	(K)		
	Plain	0.80		
	4 HS	0.88		
	8 HS	0.49		
	Twill	0.70		
	Leno	0.73		
	Crowfoot	0.46		
	Overall	0.75		

		Eigura 14		
Knocl		Figure 14	oven Fabrics	
	(uowini ac			
E-Glass I	FV (%) =	25.00		
Uni Strength (Psi) =		55,210		
Uni E-Glass FV (%) =		30.00		
		Knockdown		
		Factor		
	Weave	(K)		
	Plain	0.69		
	4 HS	0.75		
	8 HS	0.42		
	Twill	0.60		
	Leno	0.62		
	Crowfoot	0.39		
	Overall	0.64		

Sandwich Laminate under Load

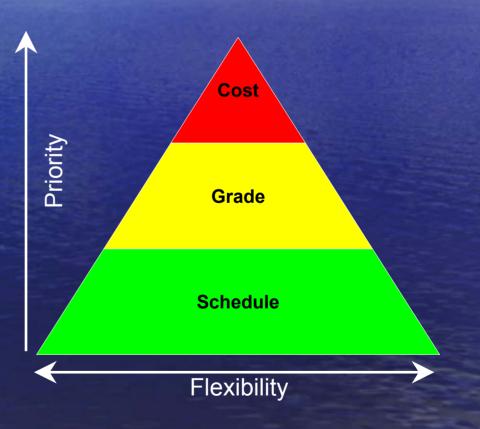
Determining Composite Density & Thickness

		Table 1					
Methods for Determining Composite Density & Thickness							
(From ASTM Composites Handbook Volume 1 Page 509)							
0.1.15.1			5011171011				
GIVEN % Fiber by Volume Fraction		UNKNOWN	EQUATION				
% Fiber by Volume Fraction							
Fiber Volume Fraction =	Εv	% Fiber by Weight =	Ev Ed				
Fiber SpG =	Fd	(Fw)	Composite SpG				
De sia Osa	D .1		(1 E) E1				
Resin Spg = Resin Volume Fraction =	Rd 1-Fv	% Resin by Weight = (Rw)	(1-Fv) Rd Composite SpG				
Resin Weight Fraction =		(RW)	Composite apo				
Resin Weight Faction -	(I-I WING						
		Composite Spg =	Fv Fd + (1-Fv) Rd				
% Resin by Weight Fraction							
Fiber Opg -	Ed	% Fiber by Volume = (Fv)	(1-Rw) Composite SpG Fd				
Fiber Spg = Fiber Weight Fraction =	1-Rw	(FV)	FU				
Tiber Weight Tattion -	1-17.66	% Resin by Volume =	Rw Composite SpG				
		(Rv)	Rd				
Fiber Volume Fraction =	(1-Rw) Fd						
Resin Spg =	Rd						
		Composite Spg =					
			(1-Rw) / Fd + Rw / Rd				
Resin Weight Fraction =	Rw						
Resin Volume Fraction =	Rw/Rd						
		Laminate Thickness					
		(No Voids - "Melted Thickness"					
Thickness t (Inches) =		<u>Fotal Laminate Weight (# / Sg.Ft.)</u>					
		Composite Spg x 5.2					
Total Laminate Weight =		Fiber Weight (# / Sq.Ft.)					
(#/Sq.Ft.)		Fw					
ta i oldi izi							

E-Glass Composite Density & Thickness

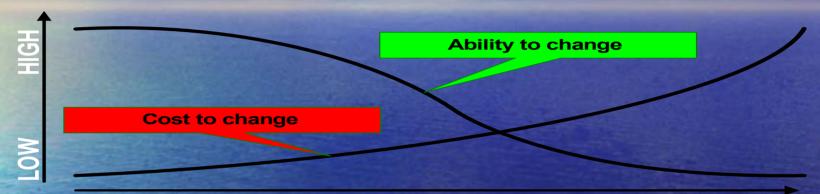
		and the second	
	Table 2.		
		-	
E-Glass Composite Density & Thickness			
0///0/			
GIVEN		UNKNOWN	
Resin by Weight Fraction			
Fiber Volume Frestien	0.050	0 Fiber buildeight	52.046
Fiber Volume Fraction	0.350	% Fiber by Weight	53.846
Fiber Density (Spg)	2.600		
Fiber Weight Fraction	0.910		
Fiber Weight (# / Cu.In.)	0.033		
Resin Density (Spg)	1.200	% Resin by Weight	46.154
Resin Volume Fraction	0.650	% Resili by Weight	40.134
Resin Weight Fraction	0.780		
Resin Weight (# / Cu.In.)	0.028		
rtesin weight (#7 od.in.)	0.020	Composite Density (Spg)	1.690
		(# / Cubic Inch)	0.0610
		(# / Odbie meny	0.0010
Resin by Weight Fraction			
ricolin by trongin traction		% Fiber by Volume	35.000
Fiber Density (Spq)	2.600	Striber by Veldine	00.000
Fiber Weight Fraction	0.538		
Fiber Weight (# / Cu.In.)	0.014		
Fiber Volume Fraction	0.150		
		% Resin by Volume	65.000
		Composite Density (Spg)	1.690
		(# / Cubic Inch)	0.0610
Resin Density (Spg)	1.200		
Resin Weight Fraction	0.462		
Resin Weight (# / Cu.In.)	0.037		
Resin Volume Fraction	0.850		
		Laminate Thickness	
	(N	(No Voids - "Melted Thickness")	
Fiber Areal Weight (Grams / Meter ²)	300		
Fiber Weight (Oz./Yd. ²)	8.850		
Fiber Weight (# / Sq.Ft.)	0.0615		
Resin Weight (# / Sq.Ft.)	0.0527		
Laminate Weight (# / Sg.Ft.)	0.1141		
Thickness t (Inches) =	0.0130		
,			

Triple Constraint


- Cost / Resources
 - Amount of \$, materials or personnel to support the project
- Schedule
 - Amount of time to complete the project
- Quality / Grade / Performance
 - Quality = Fit for purpose
 - Grade = Degree of luxury
 - (Product) Performance For yachts, this can be a sub-category of grade

Client Priorities

- Client priorities will determine how tradeoffs should be prioritized
 - If Cost is the primary driver (fixed) there should be some flexibility to "grade" and / or schedule
 - If Schedule is the driver, there may be increased cost and compromises on "grade"
 - If Quality / Grade is the driver, there may be increased cost and compromises on schedule


Applying Priorities

If Cost is the primary driver

- Exotic or expensive materials can be avoided
 - i.e. E-Glass instead of Carbon would be a compromise on "grade"
- If Schedule is the primary driver
 - You may invest additional resources (people or \$) to finish the job quicker
- If Grade is the driver
 - It may take longer to get the materials (teak decking?)
 - It will cost more than a comparable vessel without the "options"

Planning ahead

TIME

- By determining what the primary driver is during the early phases of the design process, costly and time consuming changes can be avoided later
- Every project follows a lifecycle
 - Initiating \rightarrow **Planning** \rightarrow Executing \rightarrow Monitor/Control \rightarrow Close¹
 - A clear plan will help the client, designer and builder understand each other's perspective, constraints and requirements

1. Project Management Institute PMBOK 3rd edition

Estimating Schedule

Expert Judgment

Work with the builder to estimate how long a project will take

- Break the project into phases: tooling, hull, deck, joining, assembly, finishing, etc.
- Take into account that if there are multiple projects or production lines, there will be interruptions!
- Analogous Estimating
 - If you have done similar projects previously:
 - Refer to how long each step took
 - Refer to the "lessons learned" from the project (you did write them down, right?)
- Parametric Analysis
 - Duration = Amount of Work x Productivity
 - i.e. Each ply takes 30 minutes and we have 6 plies to lay up...
- Three Point Estimate
 - (Pessimistic + 4 x Most Likely + Optimistic) / 6

Estimating Cost (and weight)

Bottoms-Up Estimate

- An accurate weight analysis provides:
 - A Bill of Materials (BOM) for constructing the boat
 - Each of the BOM components should detail both weight and cost
 - A listing of the "standard" equipment for the boat
 - This will determine "empty" displacement
 - Adding cost information will verify if you are within budget constraints
 - A listing of the "optional" as well as personal gear for a standard weekend
 - This will determine "light" displacement
 - A listing of what an owner would provision for a long trip
 - This will determine "loaded" displacement
- Analogous Estimate
 - What have similar projects cost in the past (+ inflation)?
- Parametric Estimating (good for hardware)
 - Cost = Component Cost x Quantity
- Vendor Bid Analysis

